Chemistry 340/441

Advanced Inorganic Chemistry

Spring 2010

Dr. Richard C. Holz, FH 125, Ext. 87045, E-mail rholz1@luc.edu

Classroom: DH 641; Classtime: MWF 12:35 PM to 1:25 PM

Office Hours: Th 1:00-2:00 PM, FH 125; other times by appointment.

Required Textbooks and Materials:

Housecroft Inorganic Chemistry 3e, 3rd Edition, Catherine Housecroft and Alan G. Sharpe, ISBN-13: 978-0-13-175553-6, Prentice Hall, 2008

Solutions Manual Inorganic Chemistry 3e, 3rd Edition, Catherine Housecroft

ISBN-13: 978-0-13-204849-1, Prentice Hall, 2008

Framework Molecular Model Student Kit, Brumlik, ISBN-13: 978-0-13-330076-5, Prentice Hall.

Lecture #	Date	Topic	Reading
1	1/20	Atomic Structure	Ch. 1
2	1/22	Atomic Structure	Ch. 1
3	1/25	Electronegativity	Ch. 2
4	1/27	Molecular shapes and VSEPR	Ch. 2
5	1/29	Symmetry Elements	Ch. 4
6	02/1	Point Groups	Ch. 4
7	02/3	Introduction to Group Theory	Ch. 4
8	02/5	Applications of Group Theory	Ch. 4
9	02/8	VB and MO models of Diatomics	Ch. 2
10	2/10	MO models of Polyatomics	Ch. 5
11	2/12	MO models of Polyatomics	Ch. 5

	Lecture #	Date	Topic	Reading
	12	2/15	Review	
	13	2/17	EXAM I (Lectures 1 – 11)	
	14	2/19	Solid State Structure	Ch. 6
	15	2/22	Solid State Structure	Ch. 6
	16	2/24	Nanomaterials	Ch. 28
	17	2/26	Acids and Bases	Chs. 7 and 9
٠	18	03/1	Isomerism and Properties of Coordination Cpds.	Ch. 20
	19	03/3	Crystal Field Theory	Ch. 21
	20	03/5	Crystal Field Theory	Ch. 21
	21	03/15	M.O. Theory of Coordination Compounds	Ch. 21
	22	3/17	Magnetochemistry	Ch. 21
	23	3/19	Ligand Field Stabilization Energy	Ch. 21
	24	3/22	Review	
	25	3/24	EXAM II (Lectures 14 – 23)	
	26	3/26	Term Symbols	Ch. 21
	27	3/29	Electronic Spectra	Ch. 21
	28	3/31	Electronic Spectra	Ch. 21
	29	04/7	Substitution Reactions in D _{4h} Complexes	Ch. 26
	30	04/9	Substitution Reactions in Oh Complexes	Ch. 26
	31	4/12	Electron Transfer Reactions	Ch. 26
	32	4/14	The 18-electron rule	Ch. 24
	33	4/16	Carbonyl and π -donor complexes	Ch. 24
	34	4/19	Organometallic Reactions	Ch. 24
	35	4/21	Homo- and Heterogeneous Catalysis	Ch. 27

Lecture #	Date	Topic	Reading
36	4/23	Bioinorganic Chemistry	Ch. 29
37	4/26	Bioinorganic Chemistry	Ch. 29
38	4/28	Bioinorganic Chemistry	Ch. 29
39	4/30	Review	

The <u>final examination</u> will be on F, 5/2, 9:00 - 11:00 a.m., DH641 (60% on Lectures 26-39; 20% on Lectures 1-11, and 20% on Lectures 14-23).

The <u>Tutoring Center</u> offers free small group tutoring and lab (drop-in) tutoring for Loyola students. The groups meet once a week through the end of the semester and are led by a student who has successfully completed study in the course material. To learn more or request tutoring services, visit the Tutoring Center online at www.luc.edu/tutoring.

Academic Integrity: Please refer to the policies on dishonest academic behavior in the Graduate or Undergraduate Studies Catalogs (for details see www.luc.edu/academics/catalog/undergrad/reg_academicgrievance.shtml).

Grading Policy: 100 points for each 50-min exam, 25 points for each of the four 15-min quizzes and 200 points for the final exam for a grand total of 500 points. The exams will be made up of multiple-choice and short-answer questions, whereas only multiple-choice questions will be used for the quizzes. The final exam will be comprehensive with 60% covering material since Exam II and the remaining 40% will test the materials from Exams I and II. No makeup exams will be given. A missed exam or quiz requires written supporting documentation from a physician, funeral director or equivalent, and a score will be established based on the average of the remaining course assignments.

Grades will be assigned as follows: A = 90%, B = 80%, C = 70%, D = 60%.

Learning Objectives: General course learning objectives include:

- 1. Integrate skills involving scientific methodology.
- 2. Use evidence to support a claim.
- 3. Analyze key facts as outlined during the course.
- 4. Compare and contrast the vocabulary of inorganic chemistry.
- 5. Ability to analyze chemical and physical properties of inorganic molecules.
- 6. Be able to distinguish chemical and physical properties of inorganic molecules based on structure and bonding.
- 7. Relate structure and boding to function.
- 8. Provide macroscopic and microscopic descriptions of inorganic reaction mechanisms.
- 9. Get an A in the course!